logic and proofs 逻辑证明¶
propositional logic 命题逻辑¶
conjunction:合取——“p \(\wedge\) q”即“p and q"
disjunction:析取——“p \(\vee\) q”即“p or q”
exclusive or:抑或——“p \(\bigoplus\) q”或“p XOR q”
hypothesis and conclusion:“p \(\rightarrow\) q”即“if p,then q”
here is some other ways to say the logic
“if p, then q”“p implies q”
“if p, q”
“p only if q”
“p is sufficient for q”
“a sufficient condition for q is p”
“q if p”
“q whenever p”
“q when p”
“q is necessary for p”
“a necessary condition for p is q”
“q follows from p”
“q unless ¬p”
“q provided that p”
biconditional statement:双条件语句——“p \(\leftrightarrow\) q”即“p if and only if q”
the same meaning
“p is necessary and sufficient for q”“if p then q, and conversely”
“p iff q.”
“p exactly when q.”
逻辑优先级¶
Operator | Precedence |
---|---|
¬ | 1 |
∧ | 2 |
∨ | 3 |
→ | 4 |
↔ | 5 |
propositional equivalences命题等价¶
tautology:一个命题永真 e.g.:p∨¬p
contradiction:一个命题永远为假 e.g.:p∧¬p
contingency:介于上述两者之间的命题 e.g.:p,¬p
logically equivalence逻辑等价:p≡q——p ↔ q is a tautology(永真)
We can easily say that p→q and ¬p∨q are logically equivalent(using truth table)
And here are some laws:
Equivalence | Laws |
---|---|
p∧T≡p,p∨F≡p | Identity laws |
p∨T≡T,p∧F≡F | Domination laws |
p∨p≡p,p∧p≡p | Idempotent laws |
¬(¬p)≡p | Double negation law |
p∨q≡q∨p, p∧q≡q∧p | Commutative laws |
(p∨q)∨r≡p∨(q∨r),(p∧q)∧r≡p∧(q∧r) | Associative laws |
p∨(q∧r)≡(p∨q)∧(p∨r),p∧(q∨r)≡(p∧q)∨(p∧r) | Distributive laws |
¬(p∧q)≡¬p∨¬q,¬(p∨q)≡¬p∧¬q | DeMorgan’s laws |
p∨(p∧q)≡p,p∧(p∨q)≡p | Absorption laws |
p∨¬p≡T,p∧¬p≡F | Negation laws |
universal quantification:∀xP(x) means for every x,P(x).If a x makes P(x) false,we say the x is a counterexample(反例) to ∀xP(x).
existential quantification:∃xP(x) means there is a x,P(x).
So we can find ¬∀xP(x) ≡ ∃x¬P(x) and ¬∃xQ(x) ≡ ∀x¬Q(x)