Skip to content

logic and proofs 逻辑证明

propositional logic 命题逻辑

conjunction:合取——“p \(\wedge\) q”即“p and q"
disjunction:析取——“p \(\vee\) q”即“p or q”
exclusive or:抑或——“p \(\bigoplus\) q”或“p XOR q”
hypothesis and conclusion:“p \(\rightarrow\) q”即“if p,then q”

here is some other ways to say the logic “if p, then q”
“p implies q”
“if p, q”
“p only if q”
“p is sufficient for q”
“a sufficient condition for q is p”
“q if p”
“q whenever p”
“q when p”
“q is necessary for p”
“a necessary condition for p is q”
“q follows from p”
“q unless ¬p”
“q provided that p”

biconditional statement:双条件语句——“p \(\leftrightarrow\) q”即“p if and only if q”

the same meaning “p is necessary and sufficient for q”
“if p then q, and conversely”
“p iff q.”
“p exactly when q.”

逻辑优先级

Operator Precedence
¬ 1
2
3
4
5

propositional equivalences命题等价

tautology:一个命题永真 e.g.:p∨¬p
contradiction:一个命题永远为假 e.g.:p∧¬p
contingency:介于上述两者之间的命题 e.g.:p,¬p
logically equivalence逻辑等价:p≡q——p ↔ q is a tautology(永真)
We can easily say that p→q and ¬p∨q are logically equivalent(using truth table)
And here are some laws:

Equivalence Laws
p∧T≡p,p∨F≡p Identity laws
p∨T≡T,p∧F≡F Domination laws
p∨p≡p,p∧p≡p Idempotent laws
¬(¬p)≡p Double negation law
p∨q≡q∨p, p∧q≡q∧p Commutative laws
(p∨q)∨r≡p∨(q∨r),(p∧q)∧r≡p∧(q∧r) Associative laws
p∨(q∧r)≡(p∨q)∧(p∨r),p∧(q∨r)≡(p∧q)∨(p∧r) Distributive laws
¬(p∧q)≡¬p∨¬q,¬(p∨q)≡¬p∧¬q DeMorgan’s laws
p∨(p∧q)≡p,p∧(p∨q)≡p Absorption laws
p∨¬p≡T,p∧¬p≡F Negation laws

universal quantification:∀xP(x) means for every x,P(x).If a x makes P(x) false,we say the x is a counterexample(反例) to ∀xP(x).
existential quantification:∃xP(x) means there is a x,P(x).
So we can find ¬∀xP(x) ≡ ∃x¬P(x) and ¬∃xQ(x) ≡ ∀x¬Q(x)